ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Счетчики газа ультразвуковые FLOWSIC300

Назначение средства измерений

Счетчики газа ультразвуковые FLOWSIC300(далее – счетчики) предназначены для измерений и вычислений объемного расхода, объема газа при рабочих и стандартных условиях различных неагрессивных и агрессивных газов и пара, в том числе природного, попутного нефтяного и факельных газов.

Описание средства измерений

Принцип действия счетчиков основан на методе измерения разности между временем прохождения ультразвуковых импульсов по потоку и против потока газа. Измеренная разность времени, пропорциональная скорости потока, преобразуется в значение объемного расхода.

Конструктивно счетчик в стандартном исполнении включает в себя два или четыре врезных приемопередающих блока RTU и блок обработки данных – SPU.

В счетчиках предусмотрена возможность измерения расхода газа как в прямом, так и в обратном направлениях (в реверсивном режиме), а так же автоматическая самодиагностика и проверка нулевых и контрольных значений измеряемых величин. Предусмотрена возможность осуществлять замену пары приемопередающих блоков и SPU без дополнительной поверки, при условии повторной параметризации счетчика.

Вычислитель расхода блока обработки данных SPU обеспечивает вычисление объемного расхода и объема газа при стандартных условиях, массового расхода и массы газа и пара. Вычисление теплофизических свойств газовых смесей различного состава, осуществляется по специальным методикам, утвержденным и аттестованным в установленном порядке.

Рисунок 1 — Общий вид счетчика в стандартной модификации в однолучевом исполнении (участок измерительного трубопровода поставляется по отдельному заказу).

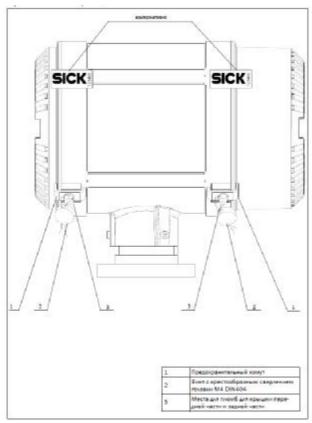


Рисунок 2 – Схема пломбирования. Блок электроники.

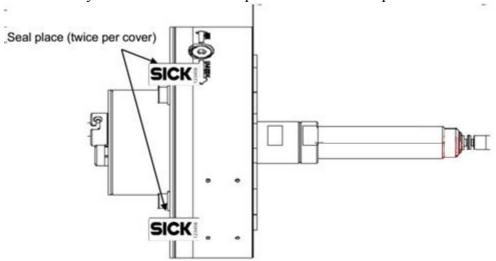


Рисунок 3 – Схема пломбирования. Приемо-передающий блок.

Программное обеспечение

Таблица1 – Идентификационные данные ПО

Идентификационные данные	Значение		
Идентификационное наименование ПО	FLOWSIC300 Firmware	Внешнее ПО (MEPAFLOW600 CBM - FLOWSIC SOS Calculator) DFORRT	Внешнее ПО (MEPAFLOW600 CBM - FLOWSIC SOS Calculator) gerg0408
Номер версии (идентификационный номер) ПО	03.05.10	б/н	б/н
Цифровой идентификатор	0x12D7 (CRC- 16 CCITT)	6372-4E51-9B58- ABF2-1711-AA05- E5A4-32E7 (MD5)	4D13-DCCD- 5839-82A8-029F- D00E-FFF6-534E (MD5)

Примечание - Программное обеспечение счетчика не относящееся к Firmware такое, как: конфигурационные параметры, значения условно-постоянных величин, параметры хранения измеренной информации и другие метрологически значимые параметры определяемые, изменяемые, передаваемые в процессе эксплуатации защищены многоуровневой системой паролей доступа с обязательным протоколированием всех вмешательств. Целостность метрологически значимого ПО, не относящегося к Firmware, определяют по журналам событий и состояниям специально выделенных параметров конфигурации, предназначенных для целей проверки целостности ПО в соответствии с руководством по эксплуатации.

Уровень защиты ПО -высокий.

Метрологические и технические характеристики

Таблица2-метрологические и технические характеристики

Таблица2-метрологические и технические	1 1
Диапазон измерений объемного расхода газа	
в рабочих условиях, м ³ /ч	счетчика (представлено в таблице 3)
Пределы допускаемой относительной погрешности измерений счетчика при измерении объемного расхода газа в рабочих условиях, %	от $\pm0,5$ до ±5 в зависимости от модели счетчика и способа поверки (представлено в таблице 4)
Пределы допускаемой относительной погрешности счетчика при вычислении массового расхода, объемного расхода и	
объема газа, приведенных к стандартным условиям %	± 0.01
Количество измерительных каналов	1 или 2
Количество измерительных каналов Измеряемые среды	1 или 2 Природные, технологические, попутные нефтяные, факельные газы
1	Природные, технологические, попутные
Измеряемые среды	Природные, технологические, попутные нефтяные, факельные газы 0,3 60 м/с (максимальная скорость

Продолжение таблицы 2

Избыточное давление газа, МПа	от 0 до 10
Номинальный диаметр измерительного трубопровода DN	от 100 до 1400
Температура окружающей среды	-40 °C +60 °C
Температура хранения	-40 °C +70 °C
Относительная влажность окружающего воздуха, не более	95 % без конденсации
Аналоговые выходы	1 выход: 4 20 мА, 200 Ω активный/пассивный, с гальванической развязкой
Дискретные выходы	3 выхода: пассивный, гальванически изолированный, открытый коллектор или NAMUR, максимальная частота 6 кГц - масштабируемый
Интерфейсы	RS-485 (для конфигурирования, диагностики и выходных данных)
Протокол обмена данными	MODBUS ASCII / RTU HART
Габаритные размеры для RTU (L x B x H) для SPU (L x D)	351 x 170 x 211 341 x 195
Macca, кг для RTU для SPU	15 6
Напряжение электропитания постоянного тока	12 28,8 В (в случае использования аналогового выхода: 15 28,8 В)
Срок службы не менее, лет	25
Средняя наработка на отказ, ч	120000
Потребляемая мощность, не более, Вт	1

Примечания:

- 1 Приведенные в таблице характеристики точности измерений справедливы в случае монтажа приемопередающих блоков на существующем трубопроводе, с соблюдением следующих условий (соответствующим монтажной документации): отклонение от соосности не более $\pm 4,9$ мм; ошибка при измерениях угла установки $\pm 0,5^{\circ}$, измерительного расстояния $\pm 0,5\%$, площади сечения $\pm 0,5\%$. Для гидравлически полностью сформированного потока газа с длиной прямолинейного участков до счетчика 20D (или 10D со струевыпрямителем).
- 2 Погрешность счетчика при вычислении не содержит погрешности определения температуры, давления и цифро-аналоговых преобразований. Погрешность вычисления массового расхода объемного расхода и объема газа, приведенных к стандартным условиям, определяются в соответствии с действующими нормативными документами на системы измерений на базе ультразвуковых преобразователей расхода

Таблица 3-Максимальная допустимая скорость газа в трубопроводе и соответствующие объемные расходы газа для трубопроводов номинальных размеров.

	1	Объемный расход газа			
Номинальный диаметр	Максимальная скорость газа	минимальный Qmin	переходный Qt	максимальный Qmax	
	м/с	м ³ /ч	м ³ /ч	м ³ /ч	
DN 100	60	8,88	29,59	1700	
DN 150	50	20,15	67,15	3300	
DN 200	45	34,86	116,18	5200	
DN 250	40	54,9	182,99	7300	
DN 300	33	78,81	262,68	8600	
DN 350	33	96,11	320,35	10500	
DN 400	33	127,31	424,34	14000	
DN 450	33	162,88	542,93	17900	
DN 500	33	202,83	676,1	22300	
DN 600	33	295,87	986,24	32500	
DN 700	30	406,43	1354,74	40600	
DN 750	30	468,27	1560,89	46800	
DN 800	30	534,49	1781,62	53400	
DN 900	30	680,07	2266,87	68000	
DN 1000	30	835,05	2783,5	83500	
DN 1050	30	922,75	3075,83	92200	
DN 1100	28	1014,83	3382,74	94700	
DN 1200	27	1212,11	4040,35	109000	
DN 1300	26	1411,54	4705,14	122300	
DN 1400	25	1638,87	5462,89	136500	

Примечание: указанные расходы рассчитаны для трубопроводов номинальных размеров, фактические значения расходов должны быть уточнены по фактическому диаметру трубопровода установки.

Таблица 4 – Пределы допускаемой относительной погрешности счетчиков при измерении объемного расхода и объема газа в рабочих условиях

измерении объемного ра	слода и объема т	usu b puoo mx ye.	ПОВИЛА	
	Способ поверки			
		имитационным		
		методом	имитационным	проливным
		(только после	методом (для	методом (для
Модификация счетчика	имитационным	калибровки на	модификации с	модификации с
	методом	месте	поставляемой	поставляемой
		установки по	измерительной	измерительной
		методике	катушкой)	катушкой)
		фирмы)		
Однолучевое исполнение				
от Qmin до Qt	±5	±5	±5	±5
от Qt до Qmax	±5	±2	±1,5	±1
Двулучевое исполнение				
от Qmin до Qt	±5	±5	±5	±5
от Qt до Qmax	±3	±1,5	±1	±0,5

Примечания:

- 1. Калибровка на месте установки по методике фирмы процедура, определяемая в инструкции по эксплуатации и монтажу счетчика, должна обязательно включать в себя контроль параметров монтажа, скорости звука в среде и тесты при «нулевом» расходе.
- 2. Qmin определяется как расход в трубопроводе при скорости потока газа 0,3 м/с, Qt как расход при скорости потока газа 1 м/с, Qmax определяется по эксплуатационной документации в зависимости от диаметра измерительного трубопровода.

Знак утверждения типа

наносится на маркировочную табличку счетчика газа ультразвукового фотохимическим способом, на титульный лист в верхнем левом углу руководства по эксплуатации методом компьютерной графики.

Комплектность средства измерений

приведена в таблице 5

Таблица 5 – комплектность поставки

T U O ST II QUE C' ROSMISSIENTI SOCIA I SOCIA DELL'I		
Наименование	Обозначение	Количество
Счетчик газа ультразвуковой FLOWSIC300 в составе:	FLOWSIC300	1 шт.
блок обработки данных	SPU	1 шт.
приемопередающие блоки	RPU	2 или 4 в зависимости от модели
Программное обеспечение для конфигурирования, параметризации и диагностики счетчика	MEPAFLOW600 CBM	1 шт.
Методика поверки	МП 0158-13-2014	1 шт.
Руководство по эксплуатации		1 шт.

Поверка

осуществляется в соответствии с документом МП 0158-13-2014 «Инструкция. ГСИ. Счетчики газа ультразвуковые FLOWSIC300. Методика поверки», утвержденным ГЦИ СИ Φ ГУП «ВНИИР» 25 июня 2014 г.

В перечень основного поверочного оборудования входят:

- установка поверочная расходоизмерительная, диапазон воспроизводимого объемного расхода должен соответствовать рабочему диапазону поверяемого счетчика, с пределом относительной погрешности не более ±0,16%;

- частотомер Ч3-63 диапазон измеряемых частот от 0,01 Γ ц до 20 М Γ ц, по ДЛИ 2.721.007 Γ У;
- средства измерений давления рабочей среды обеспечивающие измерение рабочего давления с погрешностью не более ± 1 кПа (или $\pm 0.1\%$ относительной погрешности);
- средства измерений температуры рабочей среды обеспечивающие измерение температуры с погрешностью не хуже ± 0.3 °C;
- термометр лабораторный по ГОСТ Р 50118-92, диапазон измерений от 8 °C до 38 °C, цена деления 0.1 °C;
- портативный измеритель влажности и температуры ИВТМ-7М, диапазоны измерений влажности воздуха от 2 до 98 %, температуры от минус 20 °C до 60 °C, пределы основной абсолютной погрешности при измерений влажности \pm 2,0 %, температуры \pm 0,5 °C;
- барометр-анероид метеорологический БАММ-1, диапазон измерений от 80 до 106,7 кПа, пределы допускаемой основной погрешности $\pm 0,2$ кПа;
- штангенциркуль по ГОСТ 166-89;
- средства измерений компонентного состава рабочей среды (при необходимости);
- программно-вычислительные комплексы, аттестованные в установленном порядке для расчета теоретической скорости звука (при необходимости).

Сведения о методиках (методах) измерений

«Счетчики газа ультразвуковые FLOWSIC300. Руководство по эксплуатации»

Нормативные и технические документы, устанавливающие требования к счетчикам газа ультразвуковым FLOWSIC300

1 ГОСТ Р 8.618–2006 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений объемного и массового расходов газа»

2 Техническая документация фирмы «SICK AG», Германия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

осуществление торговли.

Изготовитель

Фирма « SICK AG », Германия

Erwin-Sick-Str. 1, 79183 Waldkirch

Account no. 1 236 660 00 with Deutsche Bank AG, Freiburg

Routing number 680 700 30

SWIFT: DEUT DE 6F IBAN DE54 6807 0030 0123 6660 00

Тел. $+49\ 76\ 41/469-0$ Факс $+49\ 76\ 41/469-11\ 49$

TT		U	
Испыт	гателы	ILIU II	PHTN
LICHDII	alcoldi	тоти ц	curp

Государственный центр испытаний средств измерений

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт расходометрии».

Адрес:

420088, г. Казань, ул. 2-я Азинская, 7а Тел. (843) 272-70-62, факс. (843) 272-0032

E-mail: vniirpr@bk.ru

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИР» по проведению испытаний средств измерений в целях утверждения типа № 30006-09 от 16.12.2009 г.

Заместитель		
Руководителя Федерального		
агентства по техническому		
регулированию и метрологии		Ф.В. Булыгин
	М.п. « »	2014 г.